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: two Sta|es : residual generation and decision making It is argued that a robust FDi !

system can be achieved by designing a robust re.sidualjleneration process. Analytical
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L INTRODUCTION

Pbysiud systems are often subjected to unexpected changes, such as component

failures and variations in operat|nj condition, that tend to degrade _vefal] system

performance. We will refer to such chanses as "failures', although they may not r

represent the failing of physical components. In order to maintain a high level of

performance, it is important that failures be prom.ptly detected and identified so that

appropriate remedies can be applied. Oy.er the past decade numerous approaches to
i '

_ the problem of Failure Detection and Identification (FDI) in dynamical systems have

been developed ill; Detection Filters [2,31,the Generalized Likelihood Ratio (GLR)

method [4,5], and the Multiple. Model method [5,6] are some exampleS. All of these

analytical methods require that a dynamic model of some sort be gi.ven. The joal of

this paper is to investigate the issue of designing FDI systems which are robust to

uncertainties in the models on which they are based.

The FDI process essentially consists of two stages : residual generation and

decision makinll. For a particular set of hypothesized failures, a FDI system has the

stru©tute shown in Fisure 1. Outputs from sensors are initially processed to enhance

the erect of a failure (if present) so that Lt can be recotnized. The processed

measurements are nailed the res_Iual._ and the enhanced failure effect on the residuals

is called tile _lt,namrt of the failure. Intuitively, the residuals represent the dtferenee

between various functions of the observed sensor outputs and the expected values of
:.'y

these functions in the normal (no.fail) mode. In the absence of a failure residuals

should be unbiased, showina agreement between observed and expected normal

behavior of the syqem; a failure Signature typically takes the form of residual biases
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that are characteristic of the failure. Thus, residual |eneration is based on knowledse ...

of the normaJ behavior of the system. The actual process of residual |eneration can

vary in complexity..F.or example, in voting systems [?,8] the residuals are simply the

diJferences of the outputs of the various like sensors, whereas in n GLR system,, the

residuals are the innovations $enerated by the Kalman niter.

In. the second stase of an FDI alsorithm, the d.ecision process, the residuals are

examined for the presence of failure sipatures. DeciSion functionS or statistics are

calculated usins the r_i.d.ua.is, and a decision rule iS then applied to the deciSion

statistics to determine if any failure has occurred. A deciSion process may consiSt of a

simple threshold test on the instantaneous values or movinl averages of the residuals,

or it may be based directly on methods of' statistical decision theory, e.g. th.e /J

: Sequential Probability Ratio Test [9].

The first concern in the desian of an FDI system iS detection performance, i.e. the i

ability to detect and identify failures promptly and correctly with minimal delays and

false alarms, in the literature, thiS issue has typically been dealt with usiflj a 8ivan

model o/' the normal system behavior. An equally important desi/u issue that is

necessarily examined in practice but has received little theoretical attention is

robustness: minimizln$ the sensitivity of detection per/'ormance to model erron and

uncertainties. An ideal simplistic approaclt tO desiznins a robust FDI system iS to
tt

include all uncertainties i,_ the overall problem Apecifi_tion; then a robust desieb is

obtained by optimizine. (in some sense) tile performance of' the entire system with the

uncertainties present. HOwever, this zet_erally leads to a complex mathematical

problem that is too dimcult to solve in practice. On the other hand_ a Simple approach

1983012382-TSA06
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iS tO Ignore all model uncertainties |n the Performance optimization process. The

• resultln8 design Is then evaluated In the presence of modellin8 errors. If the

dearadatiou In performanee is tolerable, the demp is accepted. Otherwise, it is

i modified and re-evaluated. Althoush this method often yields acceptable designs, -tt

hu several drawbacks. For example, it may be unclear what parts of the deman

should be modified and what form the modification should take. Furthermore, uch

iteration may be very expensive to _rU out since extensive Monte Carlo simulations

are often _requiredfor performance evaluations.

In this paper we develop a systematic approach that considers uncertainties directly.

Our work is motivated by the practical desisn e_ort of Deckert, et. el. for an aircraft

sensor FDI system [10]. The basic idea used in this work was to identify the

analytical redundancy relations of the system that were known well and those that

contained substantial uncertainties, An FDI system (i.e. its residtml jeneration

process) was then designed based primarily.on the well.known relations_ps (and only
L

secondarily on the less well.known relations) of the system behavior. As model error
I

" dlrs_, oJfect, residual |eneratiou, this _tpproach suBests that robustness can be

efectively achieved by desianlnS a robust reSidual jeneration process, in our work,
i,

we have extracted and _xtended the' practical idea underlyinll this application and

developed a |eneral approach to the deSign of robust FDI altorithm. In addition to its

nso in 8pe©ify_8 re_iduai ileneration procedure, our approach is also useful as it c_m

provide a quantitative meesure of the attainable level of robustness tn the early senses

of a design. Tbl# can allow the deslfllner to assess what he can expect In terms or

overall performance.

* ' '. " •.................- ........... .....-- ° 9830123821-TSA07
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In order to develop residual leneratton procedures, it is Important to Identify the

redundancy relations of a system and to characterize them accordln8 to how they are

affected by model errors and uncertainties. _ this paper, we further develop the

concept of analytical redundancy that is used in [10,11], and we use this as a basis for

detorminin8 redundancy relations to be used t'or residual jeneration which are least

sensitive to model errors.

" Jn Section 1I we describe the concept of analytical redundancy and pre_ent a

'+ mathematical characterization of redundancy in linear dynamical systems that extends

ideas developed previously. We also provide for tile first time a clear, ceneral

:+} interpretation of a redundancy relation as a reduced-order Auto-lejressive-Movin$- :
/

, Averaae (AIMA) model and use this in Section I/i to describe the various ways that

c_ analytical redundancy can be used for residual generation and FDI. _n Section IV a
i:
i. method of determinin_ . _lundancy relations that are least sensitNe to model error

i f'_:i and noise effects is described. A numerical example illuStratin8 some of .the }'

,. developed concepts is presented in Section V. Conclusions and discussions are

_:, tacluded in Section V|.

'/,

.._,f
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IL ANALYTICAL RJDUNDANCY • PARITY RELATIONS

Tire basis for residual pneration is analytical redundancy, which essentially takes
e_

two forms : 1) direct redundancy - the relationship among instantaneous outputs of
i

sensors, and 2) temporal redundancy, tile relationship among the histories of sensor

outputs and actuator inputs. It is based on these relationships that outputs of

_ (dissimilar) sensors (at different times) can be compared. The residuals re_uJting

fr,-m these comparisons are then measures of the discrepancy between the behavior of

observed sensor outputs and the behavior that Should result under normal conditions.

Examples where direct redundancy was exploited include [7,8,11,12,13]; explicit use

of temporal redundancy was made in [10]. i

In order to develop a clear picture of redundant, consider the following /
i

detel_tinistic model:

x(k+1)- A x(k)+ _ bjuj(k)
j-.t................................................(li_.............

yj(k)- qx(k),j= I,...,M
(Ib)

wltere x is the N-dimensional state vector, A is a constant N x N matrix, bj is a
4

constant column N.vector, and cj is a constant row N.vector. The scal_r uj is Ule

known input to the j.th actuator, and the scalar yj is the output of the j-th sensor.

Direct redundancy exists among sensors whose outputs are algebraically related, I
I

• ti.s. the sensor outputs are related in such a way that the variable one sensor measures

can be determined by the instantaneous outputs of the other sensors. Pot the System

(1), thls corresponds to the situation where a number of the c|'s are linearly

1983012382-TSA09
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dependent. In this case, the value of one of the observations can be written as a

linear combination of the other outputs. For example, we might have

Ys(k) - _ at y_(k)
_. i-_ (2)

where the aj's are constants. This indicates that under normal conditions the the ideal

output of elensor 1 can be calculated from those of the _malning sensors. In the

_" absence of a failure in the sensors, the residual, Yl(k)- ;aiYi(k) should be zero. A
1"2

: deviation form tl_ behavior provides the indication that one of the sensors has failed, i

_,-_ This is the underlying principle used in Strapdown Inertial Reference Unit (SIlLU) i
I

:, FDI [7_8]. Note that while direct redundancy is useful for sensor failure detection it is '/

_,_ not useful for detecting actuator failures (as modelled by a change in the bj, for
i/'/

_ instance).

:, Because temporal redundancy relates sensor output and actuator inputs, it can

i i_ potentially be used for both sensor and actuator FDI. For example, consider the

_'i . relationship between velocity (v) and acceleration (a) :

ii*. t i
: v(k*l) - VOC)+ Ta(k)
::,, (3)

where T is tile sampling interval. Equation (3) prescribes a way of comparing velocity
q

2[ meuurements and accelerometer outputs (by. b_,,Icing to see if the residual,

v(k -v (k) -Ta (k) ,is zero) that may be used in a mixed velocity.acceleration sensor

_; voting system for the detection of both types of sensor failures. Temporal redundancy

_ facilitateS the comparison of sensors among which direct redundancy does not exist.

";,.! Hence it _ lead to a reduction of hardware redundancy for sensor FDI. Viewed in a

• Ib

•_- ,. _, ! _"

,_ ....................................................................................................................... _= ........................................................................................................................................................... =__-L.__" t

1983012382-TSA10



A

!.'_ i. _J •
.

different lllht, the use of analytical redundancy Lmplles that additional sensor failures

_.In principle be detected with the same level oJ'hardware redundancy.....

To see how temporal redundancy can he exploited For detectin8 actuator faUutes,

let us consider a simpJJned first-order model of a vehicle in motion :

v(k av(k) u(k)
,, (4)
i,

where v denotes the vehicle's velocity, = Is a scalar constant between zero and one
..

reflect_| the ,_ect of friction and dra$. T is the samplins interval, and u ls the

commanded en_lne force (actuator input) divided by the vehicle's mass. Now the
!

_:'_, velocity measurements can be compared to the actuator inputs by means of (4), i.e.

, throujh ._Ulljninj the residual v(k v(k).Tu(k).An actuator failure can be i

' inferred, if the sensor is Functioninl normally but the residual is nonzero. /

While the additional information supplied by dissimilar sensors and actuators at

di_erent times throujh temporal redundancy facilitates the detection of a greater

variety of failures and reduces hardware redundancy, exploitation of this additional 1

information often results in increased computational complexity, since the dynamics of' i

the system are used in the residual |eneration process. However, the major issue in

the use of analytical redundancy is the Inevitable uncertainty tn our knowledle of the

SyateJs dynamics (e.8, of' a in (4)) and the consequences of the this uncertainty on

the robustneU of' the "reSultin8 FDI ali0rithm, l%om the above discussion one

approach to tile daslsn of' robust residual |eneration in any siren application is

evident: first, the variOUS redundancied, that are relevant to the failures under

consideration are to be determined; then, residual generation i_ based on those

relations that are least sensitive to parameter uncertainties. This is the approach we

s... .......

" ", 1983012382-TSA11
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t have ado_ In the remainder of this section we will present a characterization of

,] analytical redundancy and in a subsequent section we will quantify the effect of

uncertainties on a redundancy relation.

_: TheOesm_ Per_Spece
I

Let us deine i
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¢,(n:)

[e*,..., oMl . x(k)- O, x(k), R" ....
• (1)

CM(nM)

Note tl_t In the above equation Cj(nj) has n|+l rows while it is only of ruk nj. The

reason for this will become clear when we discuss the temporal redundancy for a

sinale sensor. Assumin8 that the system (1) is observable, there are only n-N linearly

lndepen(tent-_'s satisfyinll (7). We let /'1 be an (n-N)xN •matrixwith a set of' such

independent w's as its rows. (The matrix _1 is not unique.).•Assumin8 all the inputs

are zero for the moment, we have '
]

[
Yl.(k,at)

• ,/' P(k)- _ .
• . (s)

Yld(k,nM) '_

where i
y|(k)

Yj_(k,_)- . , j- _,...,M

yj(k-J.nj)

Note that Equation. (8) Is independent or' the state x(k). The (n-N)-vectof P(k) is

calle,d the pa_ty _ctot,. In the absence or'noise and failures, P(k)-0. In the noisy

i _. no,fall case, P(k) is a zero-mean random vector. Under noise and failures, P(k) will

become biased. Moreover, di_erent failures will produce dlft'erent (biases in the)

P(k)*S. Thus, the parity vector may be used as the slsnatUre-carrytnllresidual for

!,

!. ,_

;4

'- - ' 1983012382-TSA13



I

HI.FDI'We will furtherdiscuu residual sen•ration based on parity equations In Section i
When the actuator inputs are not zero, (8) must be modified to take into accoqnt

thiS.effect. In this _uge

I

YI (konI) B.l(n t)

P(k) - _1 . - . U (k,no)
_,_)* •

, YM(k,n=) BM(nM)

where

0 0 0 /

cjn o
,..._.:.._

'I" q

_ , nj(nj) - . . .

.... i 1
• • • ¢* • • q* •

1

eqA_"tB cjA_-2B . . ejB 0 . . ?

tb 1:; B.- t,...,b¢

.... u(k)- Jut(k),...,uq(kll''I

-. _' I _

. i
''i, I ( 'o;: nO-max.nt,..._ nM) !

I

: i I I*

i

_ U(k,n O) - [u'(k),..., u'(k+no)]' :'

!] Bit _1 iS an (nj+i) x noq matrix ( q is the number of actuators) Note that Equatlott I,

"19830"12382-TSA14
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(9) only involves the measurable inputs and outputs of the system, and it does not

depend on the state x(k) which is not directly measured.

The quantity P(k) is known as the &enevolizedparlpj vec:or, which is nonzero (or

non-zero mean if noise is present) only if a failure is present. The (n-N) dimensional

space of all such vectors is called the general_.ed parity space. Under the no-faU

situation (P_k)-0), (9) characterizes all the analytical redundancies for the system

(I), because it specifies all the possible relationships among the actuator inputs and
j-.

sensor outputs. Any linear combination of the rows of (9) iS called a parity equation or

• a ,Mr#y relotlon; any linear combination of the right-hand Side of (9) is called a pdrfty

" /_nctfon. Equation (6) implies that we do not need to consider a higher dimensional

parity space that is defined by. (9) with nj replaced by lj>n|, j-1,...,M, although it is

/
possible to do so. We note that the generalized parity space we have just defined here

:_ is an extension of the parity space considered by Potter and Suman [ll] to include

_i. sensor outputs and actuator inputs at different times. In [11], Potter and Suman

_ studied exclusively (9) with nl--n 2- • • • -0.

A useful notion in describing analytical redundancy is the order of a redundancy

relation. Consider a parity relation (under the no-fail condition) defined by

e_ [Yj(Ic,nj) - Bj(nj) U(k,no)] - 0
j-t (10)

' ' We can define the order p of such a relation as follows. Since some of the elements

of e may be zero, there is a largest index fi such that the fi.th element of wt for Jome

i is nonzero but the fh+l).st tlyrough the (nj+l).st elements of each _ are zero. ,

Then p ts defined to be fi-i. The order p describes the "memory span" of the

J

' t_J

19830123£?-T£Rnt
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redundancy.relation. For example, when p-O, instantaneous outputs of sensors are !
.r

lavolv4d. When p>0, a time window of size p+l of sensor outputs and actuator ;!"
!! 4

inputs are considered in the parity equation. For example, (3) is a first order parity

relation.

To provide more insights into the nature of parity relations, it is useful to examine

several examples.

1. Direct Redundancy ........................................

Suppose there are ,._'s of the form

-[4,o,...,o]
/

where at least two of the _'s are nonzero, and they satisfy Equation (7). Then we

have the following_direct redundancy relation

IYt(.k) i.
l-J,...,_,oU_ . - o

JyM'(k]

Note that the aboveexpressionrepresentsa zeroth order parityequation.
i

2. A SingleSensor ........

Eauatton (6) implies that it iS always possible to find a nonzero 0_such that

{_,(k,.j)- nj(nj)u(k,a01.. o
(11)

Note tl_t Equation (11) is of order cj, and it is a sl_¢lal case of (10). (This is why

we Itave uHd nj instead of nj-i in (7) in order to include thiS type of tempera/

redundancy.) Since this redundancy relation invoivu only one sensor the p_rtty

f
r,

_:_" ' 2382 TSB02......... 198301 -
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function defined by the left.hand side of (11) may be used as the residual for a

self-test for sensor j, if l_(nj)-0 or if the actuatOrS can be verified (by other"

means) to be functioning properly. Similarly, it can be used to detect actuator

failures if sensor j can be verified to l_e normal. Equation (4) (in which v(k) is

directly measured) represents an example of this type.

Alternatively (I 1) can be re-written as

yj(k)--(._)-tL_-_-,yj(k-t)-_ o'Je_tu(k-t)]-, (12)

where

[0_i,. , O JOl_l, 0,. , O] " o_Jl_lj(nj)

/
e't, t-O,...,nj-l, is a q-dimensional row vector, an<+w_, t-0,...,n i- l is the (t+ 1)-st

component of _. Equation (12) represents a reduced-order ARMA model for the

j-th sensor alone. That is to say, the output of sensor j can be predicted from its

past outputs and past actuator inputs according to (12). Based on the ARM A I

model several methods of residual generation are possible. We will discuss this

further in Section III.

3. Temp"Tal RedundancyBetween Two Sensors

A temporal redundancy exists between sensor i and sensor j if there are

- + 01,,+ [,,o'. • • • . ,.,,-t.
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{ ]t""J] |YJ(k'nJ)I - iJlSJ(k'n)' U(k,no)-0.............. (131

:" Equation (13) is a special case of. the general form of parity equation (10) in the

no-fail situation with _,s-O for s_ei, s_j. The relation (13) is of order

_. p<max(nt,nj). Clearly, (13) holds if and only if

I:" (14)

!ii astd, (14) implies that. a redundancy relation exists between two sensors if their

observable subspaces overlap. Furthermore, when the overlap subspace is of

t;• ' dimension fi, there are fi linearly independent vectors of the form [wi,_] that will

satisfy (131. Note that (3) (witll both v(k) and a(k) measured) represents an
I¢

mJ_0, we can re-write (141 in an ARMA representation for sensor j as in (12)
I

w,_tyi(.k-t) - _ (o'__t+ o'__t)u(k-t)
I-0 t,'O

That Lq,the parity relation (13) specifies an ARMA model for the jth sensor, with

the oritinal system input u and the ith sen.qor output acting as inputs to this

_ueed order model, in geaerai, any parity relation specifies an ARMA model for

iome sensor driven by u and by possibly all of the other Jensor outputs.

1983012382-TSB04
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IlL RRSiDU.4J,GENR_RATIONlltOR11'I)I
|

f_-the first part of this section we discuss alternative residual generation
b

Procedures, and in the latter half of the section we discuss how such residuals,,once

i lenerated, can be used for failure detection. Our development in this section sectionWilLbocarriedout in terms of a second order system (N-2) in the form.of (1) with

the followin| parameters.

[,:,,,]A- a2_ , b- (15)

In this case nl-2 , n2-1 , and n-N-3. Therefore, there are only thtee linearly /

_del_ndent parityequations which may be writtenas

Yl(k) - (alt+a22)yI (k- 1)+ aIsa22yl(k-2) - al2u(k-2) - 0
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1. hr/ty Functionas ReSiduals

Just_aswith direct redund_mcyrelations, the parityfunction itself can be taken

as a residual. For our specific example, this would be

r I (k) - Yl(k)-atlY 1(k- l)-a t2Y2(k- I)
(17)

Such a residualis a moving average process, i.e. it is a function of a sliding window

of the most n_.ent sensor output and (possibly) actuator input values. It is useful

to ante the effect of noise and failures on the residual. Specifically, if the sensor

outputs are corruptedby white noise, the Parityfunction values will be correlated

: over the length of the window. In our example, rl(k) is correlated with rt(k-1)

end rt(k+l) but not with_anyof its wtlues removed by more than one time step. /

The effect of a failureon a parityfunction depends, of course, on the nature of

the failure. To illustrate what typically OccurS, consider the case in which one

maser develops a bias. Since tile p_rity function is a moving ave,age process it t

also develops a bias, taking at most p steps to reach the steady state value. In our

example, if Y2(k) develops a bias of size _ at time 0, rI(k) will have a bias of size

-at_ from time 0 �€�on.

2. Open-Leap Residuals

As discussed in the preceding section, any temporal redundancy relation ,

_: Specifiesan ARMA model. In our example we have the model

YI(k) "all Yl (k-l) + al;tY2(k-I )
(18)

This equStion leads naturally to a second residual generation procedure: solve

equation (i8) recursively using as initial condition the aCtUalinitial value of the

ii'i ' '

1983012382-T$[B06
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lt'st lamsot'output and then usinfl the actual value of the second sensor in the

reeurslon; compare the result at each instant of time to the actual output of se_or. ......

to_Tltat]s, we compute

9t(g) - art _t (k- 1)+ as2 Y2(k- 1)
(19)

t

with i

Yt(O)- yt(O)

and the renlting residual is

r2(k) - Yt(k) - _t(k)

The behavior of this residual is decidedly 4ifferent f_om that of. rt (k). In

partlzttlar,ra(k) is not a movinl average of previous values as it involves rite /

l_t_i,q_ton of y2(k). Thus, if yt(k) and y2(k) are corruptedby white noise, r2(k)

will in general be correlated with all of its proceeding and future values. For

example, if art-l, r2(k) is nothing but a random walk.

Tlte effect of failure is alsodifferent in r2(k). For example, if y2(k) develops a

bias, _ bias will be int_rated in (19). In particular,if all-l, r2(k) will develop

a ramp of slow -ate9 at time time g+l if sensor 2 develops a bias of size/3 at

time 0.

3. Clo_/-Loop ResiduaLs

A third mothod of residual8eneration is also based on the ARMA model (i8), *
I

)

but explicitly taking noise into account. Specifically,we write each Sensor output i

as Its noise freo value plus noiSe:
I

i

1983012382-TSB07



yi (k) - Y,o(k) + vi(k) (20)

Then, from (18) we obtain' the equation

yto(k) - atlYlo(k-l) + a12Y2(k-1) - a12v2(k-l)
(21)

Note that the known-drivins term here is tlte actua/sensoJ: output, and thus the

noise osl this output becomes a drivins_0.otse for_e model (21). Given this

• model and the noisy measurement ya(k) of Ylo(k) we can desip a Ka/man filter

_lo(k) - axx_1o(k-l) + at2y2(k-l) + H r3(k)

where H is the Kalman saln and the residual is tile innovations

r3(Ic) -. yl(k) - al1_11(k-l) - al2Y2(k-l)
/

In tills case, r3(k) is an uncorrelated sequence. ALso, if"y2(k) develops a bias at

time 0, the trend in r3(k) will be time-varyins. Specifically, it will basin at time

0+I as a rantp, but will level off to a steady state bias due to the closed.loop

nature of the the residual leneration process_

: All three of' these residual generation procedures have been used in practice. For

; example, parity functions have found many applications, ranginff from gyro failure

detection [7,8] to tile validation of siSnaLs in nuclear plants [13|. The opefl-loop

method was used in detectinl sensor failures on the F-8 alrcr_t llO], as was tile

closed.loop method, which has also been used in such applications as

electrocardiogram analysis [6] and manuever detection [i$]. Our contribution here is

to expose the fundamental relationships among these in jeneral.

;...... ---:-"--" " "................................_"-........-'-:_:'-"_'_.... l_U'lZa_Z .b_ue"--""" """'-"'"-'""
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At lint _ it mJ8bt seem that the closed-loop method.is the loiJcal method to

: uje in that, if the sensor nobe is white, it produces an uncorrelated sequence of

residuals rather than a correlatod.one that would have to be whitened in anon'optimal"

de(dsction system. In fact, joln8 one step further, it would seem decidedly suboptimal

to ux only one or several redundancy relations rather than d of them. ThaLJs_ the

•optimal" approach would seem to be desipins a Kalman filter based on the entire

model (I). This, however, is true only in the most ideal of worlds in which our

knowled|e of the system dynamics is perfect. When model uncertainties are .taken

into account it is not at aft cloat that this is what one should do. Rather, it would

seem reasonable to identify only the most robust redundancy relations and then to

structure failure detection systems based on these. This leads to two obvious I
/

questions:

I. How does one define and determine robust redundancy relations _ i
2. Given a set of such relations, how does one use them in concert in desianin8 a L

failure detection system ?

In the remainder of this section we discuss the second or"these questions, while the
r:; S

first is eddressed in the next section. Throujhout these developments we will focus

on nsl_ tile first (i.e. the parity Junction) method of residual genetation, as this is the

simplest analytically while allowin8 us to sain considerable insifLh.t..an<L.de.v.elopsome ..... ,.

very useful techniques for robust failure detection.

Ou of'P4rlO_Funcdons_.a FaOureDetectlonSystem

Now we dlscuu bow tile reslduals jenerated usin| parity functions can be used for

1983[)12382-TSB[)9
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(Mlure_detection. In this discussion we will not be concerned with the detailed

I"

decision p.t_6mJ, which would involve spa ;tic statistical tests, but we will focus on the _.

of the failure detection problem. First we will examine (sensor) PDI usins Iteom_

direct redundancy. This is the case that has been examined in most det_til in the

literature, for example, in the work of Evans and WHcox [7], Gilmore and btcKern

[8], Potter and Suman [11], Delay, el. ai. [12]0 and Desai and Ray [13]. We.include

this b_ief discussion of"concepts•de,eloped by others in ord_.r to Provide for a basis for

our discussion of their extention to include temporal redundancy relations.

Consider a set of' M sensors with output vector y(k)--[Yl(k),...,YM(k)]' and a parity

vector !j

P(k) -" n y(k)
(22)

I

where _ Is a matrix with M columns and a number of rows (the speclflcatlon of .......... _-
I

which will be discussed later). From Section II, we see that _1 is not unique, and for

eny choice of fl such that. (22) is a parity vector, we know that P(k) will be zero in

the absence of a failu_(and no noise). However, the nature of failure sisnatures

contained tn the parity vector depends heavily on the choice of fl. Clearly fl should ,

be chosen so that failure si|natures are easily recojnizal_le. In the followinl we win ....

deL_rtbe two approaches for echievint this purpose.

One 'may of usiu| the parity vector for FDI is via what we term a _ottnZscAtme. To

impJement the votin| scheme, we need a set of polity relations such that each
,,

- component (i.e. Nnsor or actuator) of intereSt IS included in at lettst one parity

rehitton end each component is excluded from at 168st one parity relation. When a

_, component falls,81i the p_trity relations involvtnj it will be violated t, while those

,t I

':_'"_-"" " ...... ...... _'"_+"+_"+.............................-'"_:-:"-":"-_" .....'"':- ....." 1983012382-TSB10
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oXdudinlj It will still hold. This means that the components Involved in parity

relations that hold can be immediately declared as unrolled, while the component that

Is common to all violated Parity relations is readily identified as failed. This is the

basic idea of votin8 that is used in [7,8]. In fact, for the detection and identification

of a stnlle failure amonj M components at least M-1 parity relations are required2.

Therefore, the number of rows in fl should be at least M-l, and the rows of /_

should be chosen.to satisfy the above criterion on the set of parity relatiOnS.

Furthermore, we note that at least three components are needed for voting and that It

• may not be possible to determine a required tl in many applications, in which case

the use of temporal redundancyis absolutely necessary.
L.

_" Another method which uses more information about how• failures_affect the i

_., talduals has been examined by Potter and Sum_ [111, and Daley, et. al. [1;]. This

method exploits the foaowlnll phenomenon. A faulty sensor, say the j.th one,

;: contains an errorsignal _,(k) in its output

y|(k) -, _ x(k) �,,(k_.)) I
(23)

The effect of this failure on the p_ity vector defined by (22) is

P(k).-.nj,,(k)

i where flj is the j.th column of t'l. That is, no matter what J,(k) is, the effect of a
i i i fl i

_ 1. 'Violet/on' e/n he defined In i v_iety of ways. Typi_lly, one compares 'the residual value to a

i l !i thtelold determined by mate metes (e,l. one may use a statistical criterion to set the threshold to
4 _ lr,llleve i speeil_ed false JIlt. eoftect detection tutdeolt). Alternatively, one may use the overate

i [:l 0f tile resided over e stidin8 window to improve the tradeoff.
i I [ 2. "ilto 108/oU_ l/ore his to he modified slialttly. If each OFthe M-I components is excluded from a
i_[i[ different parity relation and the remainin8 component Is involved in all parity relations, then
!:_Jr violation of ell parity relations tndlestes the failure of this last component, and hllures in the other

: '_]f emtlponel/hj cati be identified ua/n8 the above Ioaic. In practiee, there than M-I tel/tines are

ii_II!i:._ profened for better performancoin ,_oise, ,,

-1983012382-TSB11
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i!i sensor j failure on the residualalways lies in the direction flj. Thus, a sensor j failure
can be identifiedby recognizing a residual bias in the _lj direction. We refer to flj is _,

the Fa#ure l)b,ec_on In Parl_ S_ce (FDPS) corresponding to sensor J. (In [11] flj is

referred to as the j,th measurement axb in parityspace.)

It is now clear that 11 should be chosen to have distinct columns, so thata sensor....

failure can b_ inferred from the presence of a t_sidual bias in its correspondingFDPS.

(Note the.i an fl suitable for the voting s_eme has M distinct columns.) In principle,

an fl with M few as two rows but Iv/distinct columns is Sumcient for detecting and

ldentif.,_nja failure among the M sensors. In practice, however, increasing the row

dimension of _ can help to Separate the various I_DPS's and increase the

diSthtjuishabU1_ofthe different failuresunder noisy conditions. /

The two FDI methods discussed above can also be used with temporal redundancy.

In a votl_ scheme, one can see that the same logic applies. (In/'act, additionalself.

tests may be performedfor the sensors provldlni| corroboratory information which is

of great value when noise is present.) Consider next the extention of the second.

failure detection method to temporal redundancyrelations. In this case, it is _enerally

not possible to find an fl to confine the e/_ect of each component failure to a fixed

direction in parityspace. To see this, consiuer the parityrelations (16). We can write

the parity vector as

!Yt(k)

,(.. -.,, o o-.,, + o
o O i-a2_ l y2(lO

y2(IC-l)

•" _.................................................................. 19830i2382-TSB12
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When sensor 2 fails (with output model (23)), the residual vector develops a bias of

the form

101I01P(k) " 0 _(k) + -a12 v(k-l)
HJ J-a2:j " (24)

Unless s,(k) Is a constant, the elrect (slsnatute) of a sensor 2 failure Is only confined

to a two.dimeslsional subspace of the parity space. In fact, generally when temporal

t'edundtncy Is used in the parity function method for residual generation, failure

signatut'eSare generally constrained to multi.dimensional subspace in the parityspace.

These suhspaces may in general overlap with one another, or some may be contained

inothers.Ifno su©hsul_paceIscontainedinanother,identificationofthefailureis

stillImuible-bydetermlninswhichsebstecetheresidualbiasllesin.We notethatthe

detectionfllte_ofBeard[2]andJones[3]efectivelyacts,inadosed-loopfasi_ion,to

confine the signature of an actuator failure to a single direction and that of a sensor

failure to a lwo-dimensional subspace in the residual space.

As we indicated previouly, the second approachto using parityfunctions for FDI

uses some information about the nature of the failure signatures. Specifically,it uses
:

: information eoncerninflthe rubspaces in.which the sisnatures _volve. In this approach

no attempt is made to use any information concer,_inBthe temporal,structure of this

evolution. (l_or example, no assumption was made about the evolution of ,,(k) in

: (24).) In some problems (e.fl. in [6,101) one may be able to model the evolution of

failUres as a function of time. In this case, the temporal signature of the failure (in

. addition to the subspace information discussed above) can be determined. (If, for

inStance,_,(k) in (.23) is modelled in a particularway, then one immediatelyobtains a
I

983012382'TsB_i__:_'_......"_[.... " 1 1



f "- o _:D..

ii'*i ,model of' the evolution oFP(k) In (24).) Such lntorma¢ioncan be oF further help in

:ii_'I dlstinSuishio8 the various failures, especially in the cae where temporal fecluadancyis

_ used. Detection systems such as GLP. 14,5,61 heavily exploit such Information
; !

. c:ont4dnedin the residual. I

!
!

Ib
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IV. PARITY RBLATIONff POR ROBUST RIRSIDUAL GENERATION-..

In this section we discuss the issue of robust failure detection in terms of the

notions introduced in the previous section. The need for this development comes

from the obvious fact that in any application a deterministic model such as (1) is quite

idealistic. In particular, the true system will be subjected to noise and parameter

uncertainty. If noise alone were present one could take this into account, as. we have

indicated, throush the design of a statistical test based on the generated residuals (see,

for example, [4,10]). However, the question of developing a methodology for FDI

• that also takes parameter uncertainty into account has not been treated in the 1

literature previouly. It is this problem we address here. i!
I

The startint point of our development is a model that has the. _ame form as (1) /
/

but includes noise disturbance and parameter uncertainty :

x(k+l) - A(7) x(k) �_bj(7) tl|(k) + _(k)
j-t (25a)

:i: y|(k) - cjx(k) + _}j(k)
• (25b)
,_._ where 1, i$ _hevector of uncertainparameterstaking values in a speciltedsubset F of

!_ Rm. This form allows the modelling of elements in the system matrices as uncertain

quantities that may be functions of a common quantity. The vectors _ and

q-[_t,"" ,_IMJ' are ifldel_endent, zero.mean, white Oaussian noise vectors with "

constant covariance ntatrices..Q(_O) and R(>0) respectively. In this section we

consider the problem of determining useful parity relations that can be used for FDI

for the system described by (25).
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The Str_ture and Coe_,:tents o/a ParUy Function

Before we continue with the discussion, it is useful to define the structure and the

¢oelicleets of a parity function. Recall that a parity function is essentially a weighted

oombinaflon of a (time) window of sensor outputs and actuator inputs. The structure

of a parity function defines which input and output elements are incJ.ded in this

wi_Jow, a_d the coe,Mc_nts are the (nonzero) weights corresponding to these.

elements. A scalar parity function, p(k), can be written as

p(k) - aY (k) + _U (k)
(26)

where Y (k) and U (k) denote the vectors containing the output and input elements in

the parity function, respectively. Together, Y(k) and U(k) specify the parity

structure, and the row vectors a and D contain the parity coemcients. Consider, for

ezanlple, the first parity function of (16). Its corresponding Y(k), U(k), a, and

ate

Y(k)- [Yl(k-2), yl(k-1), Yl(k)]'

U(k) - u(k-2)

a " [alia22,-(all+a22); 1]

- -a12

Under model (25), Y (k) has the form

Y(k) - C(y) x(k-p) + @(y)_(k) + B(I,)..U..(k).+ _(k) _
(27) _

t

i
l

o
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where p is the order of the parityfunction, and

_(k) - [_'(k-p),..., _'(k-]) ]'

The components of _(k) and U(k), and the rows of C(),), @(),), and H are

determined from (25) and the structure ok"Y(k). If, specifically, the i-th component

of Y(k) is ys(k-o-), then the i-th component of _(k) is

_i(k) - "0s(k-_)

The vectors _ and _ _..e independent zero-mean Gaussian random Sequences with

constant covarlancesQ and R, respectively The matrixQ is block diagonal with Q on

the diagonal;Ru-Rst8,,, where Rtj is the (ij).tb element of R, 8_, is the Kronecker !

delta function, Rst is. the (S,t)-th element of R, and the ith element of Y(k) is

ys(k.-o'), while the jth element is yt(k-t.). The i-th row of C(7), i.e. C(i,y) is ...........

C(i,),) - csAr"

The i-th row, @(i,),), of @(_,) (which has plq columns) is
: i

@O,),) - [ csAP-_.-t, c,A_-_'-_, . .., c,, 0,..., 0]
,,

Note that x(k-p) is a random vector that is uncon'elated with _ and _, and

E| x(k-p)| - xo(k-p)

covlx(k.-p) I - Z(),)

.. where Z(),) is the (steady state) covariance of x(k-p) and it is dependent on.),

.:_ through A(_,) astdB(_,).

il The mat_x B and the VectorU (k) are determined as follows. First, collect into a
fr
I_

!: t ,_
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matrix l_.all.lhe.rows in tlj(k,_,) (see Equation (9)) correspondinsto C(i,_,). Then,

coflect all the non-zero columns of I] into H and the cot'responding components of u

in the windowintotY(k).

In.the preeeedinz section, we defined parity functions as linear combinations of

;. inputs and outputs that would be identically zero 1.11the .abSen_ce...ofnoise. When

paraaletor uncertaintiu ate included, however, it is not possible in general to find any

_" parity functions in this narrow sense. In particular, with reference to the function

li p(k) defined by (26) and (2"/) this condition would require that act7)-0 for aH

_,cl'. Consequently, we must modify our notion of a useful parity relation.

Intuitively, any given parity structure will be useful for failure detection if we can find ......... /!
/I

a Set of parity coemcients that will make the resulting function p(k) in (26) close, to

zero for all values of 1,of" when no failure has occurred. When considerins the use

of such a function for the detection of a particular failure one would also want to...

suaranty that p(k) deviates significantly from zero for all 1,=F when this failure 1

k

occurs. Such a parity structure-coeJltctent combination approximates the true parity

_unction defined in Section IX. Our approach to the robustness issue is founded on

this perspective of the FD.• design problem, and we will choose parity structures and

:: eoeflJcients that display these properties. From this vantage point, it is not neccessary.

to base a parity structure on a C with linearly d.ependent rows. Of course, the closer

I !_
:.i the rowelof C are to being dependentthe less the value of the state x(k-p) will affect
T: •

_ tits value of the approximate parity function, t.e. the the closer the approximate parity' i

_:i'l!i function is to being a true parity function.
/

Determinodono/ Parity Structureand Coe]_elenfs

1983012382-TSC04
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Clearly, there ate many candidate parity structures foe a liven system. For a

voting system, .the r_uirements on £1 as described in Section 11I help to limit the

number of such candidates that must be considered. In addition special features of

the s_ltq_l___nder consideration typically provide additional insigh_ into othe choice of

candidate _rity structures. Given the Set of candidate structures one is faced with the

pl.oblem of finding the best coefficients for each and then with comparin$ the resultinll

candidates. In this paPer we will not address the problem of defining the Set of

candidate structures .(asthis is very much a system-specific question) but will assume

thatwe have such a set of structures*, and we will proceed to consider the problem of
!

F '

determining the coefficients for these structures and their comparison. In the

following we will describe a method for choosing robust parity functions. Although i/
f

this approach represents only one method of solving the problem, it serves well to

illustrate the .basic,ideas.of a useful design methodology.

The parity function design problem is approached in two Steps : 1) coefficients that

will make the candidate parity functions close to zero under the no-fall situation are

determined, 2) the resulting parity functions that p.rovide the most prominant failure

signatures for a specified failure will be chosen. We will consider the coefficient

desilla problem first.

We stt'e concerned with the choice of the coefficients,, a and ,8 for the. parity

fncuo.

i! Plk) - a [C(3,) x(k-p) + 4P(y)_(k) + B(_,)U(k) + _(kl] - ,sU(k)

i i:i!i!li/ Note the dependence of p(k)on a, ,8, 1,, x(k-o), and U(k). As p(k)is _t random
: • Thisset couldbe diistructuresup to a specifiedorder,whichis a finiteset.

i:.-..:_.11_,,.
i,'_"
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variable, a convenient measure_of the.mapitude (squatod) of p(k) is itS variance,

!_ 1_(k) J,wltere the expectation is taken with fespeet to the joint probabilitydensity of

x(k-p), _(k), and _(k) with the mean xo(k- p) arid the.._alue of U(k) assomed

known. As we will discuss shortly, this can be thouah.,_t,of, as specifying a particular

operatin8condition for the system. Note also that the statistics of x(k-p) depend on
./

1,. Define

e(a,_) - max E|p2(k)|
7cr (28)

Tile quantity e(a,_) reprtRxtts the worst case effect of noise and model uncelqalnty

on the parityfunction p(k) and is called the pdrttyerrorfor p(k) with the coeftlcients a

and _9. We can attempt to achieve a conservative choice of the paritycoefficients by /
solvtnt

rain e(a_8)
e,B

Since it lies a trivial solution (a-0, #-0) this optimization problem has to be

modified in order to _ive a meanin$ful solution. Rectll that a parity .equation

primarilyrelates the sensor outputs, i.e. a parityequation always include output terms

but not necessarily input terms. Therefore, a must nonzero. Without loss of

.,, |enerallty, we can restrict _t to have unit masnitude. The actuator input terms in a

parityrelation _tay be relarded as servinftto make the parityfunction zero so that_9is

..... nominally free. in fact, _ has only a slnt_ledesree of freedom. Any # can be written
i l '

-_j:. as #--kU'(k) ,�4,��¬�wherez Is a (column) vector orthojonal to U(k). The component z' . .

i lfl _8will not produce any effect on p(k). This implieSfor each U(k) we only have to

• consider _ of the form _-_U'(Ic), and we have the folJowtniminimax problem'

!/•i



l

mhl max EJp2(k) I :_i
_,_ 7or (29) ....

IULare'-- L. :.

where _.

et4(k)l - [a,xlS la,_ I'

nd S is the symmetric positive.definite matrix

S. - C(?) [Xo0C-p)xo'(k-p)+ Z(r) ]c'(_,) +

@(7)q4_'(_) +R + B(_,)U(k) U'(k) B,(?) +

C(?) Xo(k- p) U'(k) B°(7) "_B(7) U(k) Xo'(k) C'(_,) / i

!
$12":_s'" -S_ 2 [B(?) U (k) + C(_,) xo(k- e) ] i

S2z- [U'(k) U(k) ] !

Let a* and k* denote the values of a and x that solve (29), with jS'-),*U'(k). Let |

e" be the minimax parity error of (29), i.e, e'-e(a',j9"). Thet2 e" is the p_rity error i

cO.espondln8 to the parity function p'(k),*a'Y(k) .The quatliity e* ,

w,_re_l the usefulness of' p'(k) u a parity., function around the operatiull poMt .

spedted by xo(k-p) andU(k).

Althoudh the objective function of' (29) is quadratic in a and x, (29) is 8enerally !

very _fficult to solve, because S may depend on 1' arbitrarily. (See [161 and the next Isection for a discussion or the solution to some special cues.) The dependence on _V

,'%q

_p t,

1983012382-TSC07



- 3:t -

cu be Jimpltied somewhat by the followin8 approximation. Recall that the role of a

parity equation is to relate the outputs and inputs at dif_;erent points in time. The

matrices_C, O, and B, which specify the dynamics of the system, thuS have the

dominant efgect on.Abe.J:hoice of-a parity equation. From thiS vantage point the

primary effect of the uncertainty in 3" is typically manifested throueh the direct

Influence of these matrices on the matrix S, rather than through the indirect eUect

they have on Z(3"). Said anotller way, the variation in S as a function, of 3' is

dominated by tile term_ involving C, 4b, and B, and in this case one introduces only a
•

minor approximation by replacinf| Z(3') by a .constant Z. This is equivalent to .......

a_tuntin| the likely variations in the state do not chanfte as a function of 3'. With this

approximation the S matrix shown above call be simplified, and we will use this /

approximation throughout the remainder of the paper.

Note tl_t the dependence of e(a,_) on Xo(k- #) and U(k) indicates that the I

coefficients in principle should be computed at each time step if xo(k- p) and U (k) are

, ehaaetafl with time. This is clearly an undesirable requirement. Typically, a set of

- coefficleslU will work well for a ran|e of values of Xo(k- p) and U (k). Therefore, a
t

• praetical approach is to schedule tile coefficients according to the operating condition.

f! Each operatiu8 condition may be treated as a set.point, which is characterized by some

itiI nominal state xo and input U0 that are independent of time. Parity coefficients can be
|

1 '-_ ,:! precomputed (by solvini (291 with x_ and Uo in piece of xo(k- p) and U(k)) and i'

', stored. Theft the appropriate coefficients can be retrieved for use at the correspondin8

Nt-pulbt. When the state and the Input are vatylns Slowly, this-scheme of schedulin$

coefficients is likely to deliver performance close to the optimunl. L.

t

1983(312382-TSC(38
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-_' If a more acuurate approximation is desired, the coemcients schedulinl _heme
i_ _ ,

.... describedabove can be modLhd to accountforvariationsIn the inputdue, for

example,to re$.olationof the systemat the setpointxo. In particular,one can

* consider modelUn&.._U{_k)-Uo+aO(k), where 8U (k) is a (stationary) zero.mean

random processthat models the deviation of _e input from the nomb_J 117o. With

tb_ medication, tile expectation of p2(k) has to be taken with respectto the jot_t

probabiUtydenS.ltyof.x(k-p), _(k), _(k), and aU(k). With xo and Uo fixed. This will

lend Io a more complex $ matrix. Furthermore, the vector _ will no longer be

constrplned but completely free. However, the general form of the optimization

problem remains uncltanl_ed.

,i Anotlter approach to circumvent the requirement of solvin| the coeflicient design i

problem for many values of xo and Uo is to modify (29) to be

rain max E| p_(k) }
7or 00)

&Lee*..l xe(k-p) EX

U(t)eY

where X and Y denote the ranges of values that xo(k) and U(k) may take,

respectively. This fonnulatien leads to a single parity function over all operat_g

conditions. We will not explore this approach here, but refer the reader to [17].

/: Whether this altetoative approach or our coemcient.schedulin8 method is mote

appropriate depends on the problem, if the state and control are likely to very

8iatti/_cantly and if e(a,_) is not that stroog a function of xo and Uo, the alte_ative

approach would be appropriate. If however tb state and control ale likely to be near

spec/ae set points for periods of time, then using a parity f'unctio_, matched to that

condition would yield superior performance.

........:"--':"_'__ ........ -_-_" '.-'- • _ ........... _'-- ...........: _., '_ _._._.._--_-._.,............,_~_.-_ .----"-._,._. . _ --" _........., ,_".....,L ...... __
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With the coemcients and the aesociated parity errors determined for the candidate

parity structures we can proceed to choose the parity_nctlons for residual deneration

usins the parity function method. As the squared30Itaanitudeof the coeMcients [a_9]

ScaleLthem:ity error, the parityerrorsof different parity funetions can be compared

if they ate normalized. We define the nomsa_ parl_ error, if', the aomsa_ .z_srlO_

¢oe_cia_ andthe norm_b.edl_rlty.funcelon,p"(k), asfollows

_"- e*lO

mO • /a --a O. I

L
._...-_Û/o ,,

)
p'(k)- a"Y(k)- _"U(k)

wltere

o2- [,t, _] [a, _]°- 1+.6",8"'

The parity functions with the smallest normalized parity errors are pr_erred as they

ere closer to bein8 true parity functions under noise and model uncertainty, i.e. they

are lust sensitive to these adverse effects.

An additional consideration required for choosin| parity functions for residual

8eneration is that the chosen parity functions should provide the larZest failure

slpatures in the residuals relative to the inherent parityetyors resultin8 from noisee.

and parameter uncertainty. A useful index Forcomparinz parity functions for this

purpose is the stenmure to parity error ratio, _', which iS the ratio between the

,: mqnltudes of the failuresignature and the parityerror. Usin8 s to denote the effect

,|,

 ge3o 23e2TSC 0
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of a failure on the parity function, _r..canbe defined as kr '

'_,-Isll_"

- For the detection _td identification of a particular failure, the parity Function that

produc_l the ¼rlNt f should be used for residual jeneration. We live an example, af

thts procedure in the next section..

Of.vc_u_es

Since a hule sipature to parity error ratio is desirable, a losical alternative

approach to the choice of' parity structure and coefficients is to consider the silnature

" to parity error ratio as the objective function in the minimax desiln. Althoush this is
"b *

.. a mo_ dtt_t way to achieve the design lO_l,...lt requites solving a more dittlcult

....i*" optimization problem than (29). The method described above and the example it, the

'_: next section take advantafLe of the comparatively simph_ optimization problem to _I
• m

t

illustrate the essential idea of how to determine redundancy relations that are least I_

vulne_ble to noise and model 6trots. For di_erent residual leneration methods the

measur,, of usefulness of parity functions, such as e and _. in the above, may be

different, but the basis deslln concept illustrated here still applies.

The minimax problem (:29) can be replaced by a maximization if a_probability

density for the parameter _, can be postulated. That is, tile desilln problem now takes

the form iii_
max Elp2(k)} !
a,k.

I.L a_J_"l

where the expectation of"p2(k) is taken with respect to the joint density of x, _, _, and

_:_:_-.........,-,-_._.................................... . . :_-_:_:::::::-........:.....: -_-_:-::::: .............:_ ................:::::::::::::::::::::::::::::::::::::::::::::::.....................i-.:-"'--::.....::::.: '_::



_,. This fotmuJation will 8ive a muclt simpler optimization to be solved practically

then the minimax approach.

' ,t !
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V. A NUBII|(_AI, IlIAMPIJ

18 tlW section we consider the problem of' choosin8 parity Junctions and parity

coemcionts for a 4-dimensional system oporatin8 at a set.point with two actuators and

three sensors. The system matrices are shown in Table I. Except for two elements in

the A matrix 811parameters are known exactly. These two elements are assumed to

be independent parameters denoted by 71 and .?.2.

Suppose _e want to desian a votin8 system for detectint a sensor failure. Three

candidate parity structures are

'y2(k_2)

ly2(k-l) 1 yl(k_2) y,(k-,)!

Pl(k) - a I J y2(k) .J, p,/(k).- a 2 p3(k) -- a 3 y3(k)
lYl(k-S) J Yl(k-1) ' /Yl(k) yl (k- 1)

where the ai's are row vectors (of parity coefficients) of appropriate dimensions. The

correspondln8 4) and C matrices are shown in Table 2. Note that each C and @ t

matrix depends linearly on either 71 or ?2 and that the rows of C2 are not linearly

•dependent for any value of ?2. The parity structures under consideration do not

contain any actuator terms due to tile fact that ClB, c2B, c2AB , and c3B are all zero.

This will simplify the solution of' the minimax problem without severely restrtctin8 the

discussion. Assumin8 a sinale sensor may fail, only p_ plus Pl or P2 need to be used

for residual |eneration (because both p! and P2 include sensors 1 and 2). Therefore,

in addition to tile coeticient desil;n problem, we have to rank the two parity structures

Pl and P2 in order to determine which will.8ire more robust residuals.

t

1'
' Ib*i ""
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The mhtlmax deslan problem has been solved for a set of six test conditions t

eonsistin8 of different set-points and different plant and sensor noise intensities.

These test conditions are described in Table 3. (The two set.points are obtained by

epplytn8 uj--1 or u2--10 to the nominal system model.) The nominal state

cova_nce8 Z I and Z2 due to the two different plant noise intensities QI and Q2 are

lllted in Table 4. Due to the simple dependence of the parity functions on the _,'s an

eflictant solution procedure is possible [16]. The resultin8 parity coefficients and the

correspondin8 (normalized) parity errors are summarized in Table 5.

.i
It is evident that the parity coefllcients in this example are strongly dependent on i

the tear.condition (i.e. the values of xo, Q, and R). Although this dependence.is very J

complex, some insights may be obtained from the .numerical results. Consider, for

instance, Pl under conditions b and c. For condition b the parity function is
_.,,_

P11,(k) - .6411 Y2(k- 1) -//666 Y2(k) + .03"/8 Yl(k- 1)

and for condition c it is

pie(k) - .8.947y2(k- 1) - .3667 Y2(k) - .2551 Yl(k- 1)

The only difference between these conditions ties in the value of xo. Since the first

and fourth columns of C1 are zero,"only the second and third elements of xo (Xo2and

. xo3) will play a role in the coemcient optimizaton problem. The parity function Pl can '

be written in the form

PI " allXo2 + a12(Xo_+71Xo3}+ al$Xo3 + 4_(_'1,a1) I
I.
1

" where all , 1-i,2,3 denote the elements of a t corresponding to y2(k-1), y_(k), and !_
I

I'yl(k-1), respectively; _ denotes the remainin8 noise terms, it is clear that Xo_and

1983012382-TSC14
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at2 modulates the effect of 7t on Pl. quafltatiVely, as Jxo_Jbecomes larae relative to

JXo2J(with all noise covariances the same), the optimal a j2 will reduce in size (relative

to at1 and a13) in order to keep the effect of 1'1small. As Jxo_Jincreases, the sisal to

noise ratio of Yl(k) also increases. Therefore, we expect Jal3j to become larae to take

edvantaae of the information provided by yl(k). Under condition b, Xo2>Xo3, and

under condition c the reverse is true. An inspection of Pt under these condition as

listed above shows that this reasoning holds. Therefore, built into the minimax

problem iS a Systematic way of handlini the tradeof_ between uncertainty effects due

to noise and error in system parameters.

t

lqota that both Pl and P2 relate the first sensor to the second one, and P2 is a 1
, !
: bircher order,oparity function than Pl. Furthermore, the rows of C2 are not linearly... //i

dependent for any value of _'2. However, the parity error associated with P2 is smaller

than that of Pl in all conditions except condition a. This shows that a higher order

-.: parity relation (which is more likely to contain hisher order effects of ?) is not I

_; necessarily more vulnerable to model errors and noise. In addition, a parity function
^-i,,_

t:! based on a C matrix with rows that are linearly dependent for all values of 1, does not i
4

with independent.rows, t

In Table. 6 we have tabulated the sisnature to parity error ratio associated with the
1

three parity functions for sensor failures that are modelled by a constant bias of size _'l _,

in the output for t_st conditions c and d. Here, _'i denotes the sijnature to parity

• error ratio for a bias failure In sensor i, and it is calculated by substituting _i for y, in
v

il the pa/'lty function (26) with the minimax coefficients. Such a table iS helpful for

i

,t t i _'."i

=- ..... - .... i983012382-TSD01
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I

o.o

I

I
determbtJo8 the relative merits of"Pl and Ps. For instance, under condition d and q

_ia| _1"_'2,Ps ts preferred to Pl because it has a larser value of _l tluin p__wbiJe _-

Its_ value Is comparableto thatofPs-

i'!
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VL CONCLUSIONS _._'_

lit thht paper we have ¢hmecterized the notien of analytical redundsncy_ in terms of "
14

t jeneralized parity space. We have described three methods for ustn8 perity relations

to |enerato residuals for PDI. The problem of determininS robust parity relations t'or_............ _

roSidutl pne_ttion usinj rite parity function method was studied. This desiju task

was formulated as an optimization problem, and an example was presented to

lflusttsde the desiju methodolosy. A number of problem areas await further research.

They include : a method for selectin8 useful parity structures for the parity coefficient

problem studied in Section 11/, solution procedures for the (minimax) optimization t

problem, and a method for determining parity relations for other methods of"residual

|eneYstion (i.e. the open:loop and the closed-loop methods). /L

i i

I,

ii/
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: TABLE1: SYSTEMPARAMETERS "

m

4.

1983012382-TSD07



• e

ml. ql m

0 1 0 0 0 0 0 0 1

J(_t" 0 .$ ?t 0 4'I- 0 1 0 0

0 0 ! 0 0 0 0 0

i -

lid

_" 0 1 0 0 "0 0 0 0 0 0 0 O"

0 0 1 0 0 0 0 0 0 0 0 0
C2 -- 02.

-1 0 0 1 0 0 1 0 0 0 0 0 _/

-.5 -.7 -.7 �.172.04 -I 0 0 .I 0 0 l 0

o.oo,l Ioooo...._ C3- 0 0 _'2 .4 4)3- 0 0 0 l

+. 0 0 1 0 0 0 0 0

'.T

" TABLI_ 2: THE C AND • MATRICRS



p' q

Tg_T COND. i_A-RAMETERS LI
'.-i]

[0 0 0 01' __i. xo "

QI DIAG R- 11 1 I]

r,0 - [-4.16 7.03 4.06 -1.01]'
b

Q1 DIAGIt-[I 1 I]

Xo "" [4.06 2.90 5.80 -1.45]'
c

QI DIAGR- [1 1 1]

i_'. xo -. [4.06 2.90 5.80 -1.45]'

i ql DIAG R-- [I 2 2]

- [4.06 2.90 5.80 -1.45]'
@

;ii Q! DIAG R- [2 1 11

i: |

XO - [4.06 2.90 5.80 -1.45]'
f

QI DIAG R- [1 1 1]

i'

.25 0 0 0 " " .25 0 -,325 0 "

0 0 0 0 0 .5 0 0
ql" Q2"

0 0 0 0 -.325 0 .625 0 ,

, i,

• 0 0 0 .25 0 0 0 .25 i
//

TABLE 3: TEST CONDITIONS I]

Ll

I ILI, ,,j.
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•5580 .0342 -.1508 -.0552 "

.0342 .0102 -.0129 -.009"/
Z! '-

-.1508 -.0129 .5772 .0117

. -.0552 -.0097 .0117 .3113 [
I
H
/m

1.9580 -.8434 -1.1140 -.1049 "

-.8434 1.8030 .7691 -.1996
Z2-

-1.1140 .7691 2.6050 -.I081

. -.1040 -.1_)6 -.1081 .3829 !

.!

TABL_ 4: NOMINAL Z .................................................................

i:

i:
!:
E

I"

l:



+
7

i

!

.+, COI,ID. l_C.

1...... 1.022 .12112 -,6809 .0791

II 2 1.008 .99113 .0223 .0.,6113 .0219

$ 1.118 .6833 -,7209 -.1167
I f

1 1.082 .6411 -.7661J .0378

b • 2 1.101 .4462 .5079 -.4356 ,5942

$ 1_10 .7027 -.7115 -.0t_10 i

1 1.1196 .8947 ..3667 ..2551

+ C 2 1.055 .9599 -.1484 .1992 .1296
d

3 1.230 .759_ -.6504 .0249

1 1.908 .7965 .3023 -.5395 /
. I1 2 1.123 .7345 -.$931 .4697 -.6559
i/.
i; $ 2.22tl .7981 -.6007 .0684

1 1.124 .SOS8 -.$832 -.102$ t

e 2 1.122 .9669 -.1204 ..... 1242 .1875 P

$ 1.230 .7441 -.6679 .1692

1 1.427 .73.27 -.6803 -.0166

• t 2 1.311 .5146 .4,i04 -.3312 .6570

$ 1.254 .63+$ -.7687 .... .0375

t

;i TABLn $: MINIMAX PARITY COEFFICIENTSAND PARITY ERRORS

t

++ +++,+
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